neurosciencestuff:


Synapses are modified through learning. Up until now, scientists believed that a particular form of synaptic plasticity in the brain’s hippocampus was responsible for learning spatial relations. This was based on a receptor type for the neurotransmitter glutamate: the NMDA receptor. Researchers at the Max Planck Institute for Medical Research in Heidelberg and Oxford University have now observed that mice develop a spatial memory, even when the NMDA receptor-transmitted plasticity is switched off in parts of their hippocampus. However, if these mice have to resolve a conflict while getting their bearings, they are not successful in resolving it; the hippocampal NMDA receptors are clearly needed to detect or resolve the conflict. This has led the researchers involved in this experiment to refute a central tenet of neuroscience regarding the function of hippocampal NMDA receptor-transmitted plasticity in spatial learning.

Source: Max Planck Institute for Medical Research

neurosciencestuff:

Synapses are modified through learning. Up until now, scientists believed that a particular form of synaptic plasticity in the brain’s hippocampus was responsible for learning spatial relations. This was based on a receptor type for the neurotransmitter glutamate: the NMDA receptor. Researchers at the Max Planck Institute for Medical Research in Heidelberg and Oxford University have now observed that mice develop a spatial memory, even when the NMDA receptor-transmitted plasticity is switched off in parts of their hippocampus. However, if these mice have to resolve a conflict while getting their bearings, they are not successful in resolving it; the hippocampal NMDA receptors are clearly needed to detect or resolve the conflict. This has led the researchers involved in this experiment to refute a central tenet of neuroscience regarding the function of hippocampal NMDA receptor-transmitted plasticity in spatial learning.

Source: Max Planck Institute for Medical Research